Scientific Partners

Leading quantum research centres around the world contribute to Quantum Shorts, together with the organiser, the Centre for Quantum Technologies in Singapore, and media partners Nature and Scientific American. Learn more about them and their research.

Dodd-Walls Centre

The Dodd-Walls Centre is a national Centre of Research Excellence involving five NZ universities, hosted by the University of Otago. Our research focuses on New Zealand’s acknowledged strength in the fields of precision atomic and quantum optical physics, with our name drawn from two kiwi pioneers in these fields. Our research explores the limits of control and measurement at the atomic scale through the use of laser light, the generation and manipulation of light at its most fundamental, quantum level and the processing and physical nature of information in this quantum realm. The Dodd-Walls Centre also actively promotes science education and outreach to the wider public through partnership with Otago Museum and other organisations nationally.

 

ARC_EQuS

The Australian Research Council Centre of Excellence for Engineered Quantum Systems (EQUS) is engineering the quantum future by building quantum machines that harness the quantum world for practical applications.  We are solving the most challenging research problems at the interface of basic quantum physics and engineering, working with partners in industry to translate our discoveries into practical applications and devices, and training a new generation of scientists in cutting-edge research, innovation and entrepreneurialism.

 

The Institute for Quantum Computing (IQC) is a research institute at the University of Waterloo in Canada. IQC was founded in 2002 and today hosts over thirty research groups studying quantum information through the lens of mathematics, computer science, chemistry, physics, and engineering. Our researchers are developing new ideas and technologies for quantum computing, communication, sensors, and materials. IQC is training the current and future quantum workforce, supporting industry through shared infrastructure and expertise, and making quantum science accessible at all levels.

 

IQIM" 

The Institute for Quantum Information and Matter (IQIM) at Caltech in the US is a Physics Frontiers Center supported by the National Science Foundation. IQIM researchers study physical systems in which the weirdness of the quantum world becomes manifest on macroscopic scales. Our research programs span Quantum Information Physics, Next-Generation Quantum Metrology, and Building and Driving Quantum Matter, with faculty drawn from Caltech’s departments of physics, applied physics, electrical engineering, computer science, and chemistry, and addresses a wide variety of experimental and theoretical research topics.

 

QuTech is a mission-driven research institute of Delft University of Technology (TU Delft) and the Netherlands Organisation for Applied Scientific Research (TNO). At QuTech, we work on a radically new technology with world-changing potential. Our mission: to develop scalable prototypes of a quantum computer and an inherently safe quantum internet, based on the fundamental laws of quantum mechanics. To achieve these ambitious goals, we bring together scientists, engineers and industry in an inspiring environment. We are jointly creating the quantum future, because we believe that quantum technology can be a game changer in many social and economic sectors, including health, agriculture, climate and safety.

 

UK National Quantum Technologies Programme

The UK National Quantum Technologies Programme is a £1B investment by the UK government to ensure the successful transition of quantum technologies from laboratory to industry. The programme aims to create a coherent government, industry and academic quantum technology community that gives the UK a world-leading position in the emerging multi-billion pound new quantum technology markets.

Organisations supported through the programme coordinate on public engagement under the theme of Quantum City. Those participating in Quantum Shorts are as follows:

 

QuantIC

QuantIC is the UK Quantum Technology Hub in Quantum Enhanced Imaging and is part of the £1 billion UK National Quantum Technology Programme. It brings together world-leading quantum scientists at the Universities of Glasgow, Bristol, Edinburgh, Heriot-Watt, Exeter, Strathclyde, Southampton and Imperial College London, with more than 40 global industrial partners to pioneer a family of multidimensional cameras operating across a range of wavelengths, time-scales and length-scales, creating a new industrial landscape for imaging systems and their applications in areas such as security and defence, medical imaging, transportation infrastructure, space communications and climate change.

 

Quantum Communications Hub

 

The Quantum Communications Hub, funded through the UK National Quantum Technologies Programme, is a major collaboration of universities, numerous private sector companies and public sector bodies brought together to accelerate the development and commercialisation of quantum secure communications technologies and services at all distance scales.

The main vision of the Quantum Communications Hub is to deliver future-proof, practical, secure communications by exploiting the commercialisation potential of existing prototype quantum secure technologies beyond their current limitations; to contribute to the establishment of a quantum communications technology industry in the UK; and to feed its future expansion, competitiveness, diversification and sustainability.

 

The Quantum Computing & Simulation Hub (QCS) - the largest of four hubs in the UK National Quantum Technologies Programme – is a collaboration between 17 universities, supported by over 25 commercial and governmental organisations, with the University of Oxford as its lead partner. The Hub encompasses a diverse range of disciplines from hardware and software to core technologies and potential applications, reflecting the many different skills required to transform quantum computing.

Quantum Technology Hub in Sensors and Metrology

The UK National Quantum Technology Hub in Sensors and Timing (led by the University of Birmingham) brings together world-leading experts from Physics and Engineering from the Universities of Birmingham, Glasgow, Imperial, Liverpool John Moores, Nottingham, Southampton, Strathclyde and Sussex, NPL and the British Geological Survey to drive commercial exploitation of quantum sensor technology in collaboration with industry. Particular areas of focus are magnetometry, geophysics, navigation, timing and underpinning technology aimed at reducing the size, weight power and cost of future sensor systems. The QT Hub, which has over 100 projects valued at approximately £100 million, is keen to collaborate with industry companies to further advance quantum sensor technologies.

 

NPL

The National Physical Laboratory (NPL) is the UK’s National Measurement Institute, providing the measurement expertise that underpins economic growth and quality of life in the UK. From new antibiotics and more effective cancer treatments, to unhackable quantum communications and superfast 5G, technological advances must be built on a foundation of reliable measurement to succeed. Our science, engineering and technology helps to make the impossible possible. We are a world-leading research facility with over 500 scientists and engineers working in almost every field to save lives, protect the environment and enable citizens to feel safe and secure, as well as to support international trade and innovation.
 

                               

The UCL Quantum Science & Technology Institute (UCLQ), based in central London brings together over 120 researchers and 30 research groups working at the forefront of quantum technologies, from foundations through to applications, helping to develop this fast-advancing field of research.

UCLQ Research areas span quantum computer science, electrical and systems engineering, as well as quantum physics, and falls within four major themes: 1. Quantum Sensors and Metrology; 2. Scalable Quantum Computers; 3. Quantum Interfaces and Communication; and 4. Quantum Algorithms, Architectures and Complex Systems. UCL’s Doctoral Program in Quantum Technologies prepares students to operate in a complex research and engineering landscape where quantum physics meets cryptography, complexity and information theory, devices, materials, software and hardware engineering.
 

Quantum Theories: A to Z

W is for ...
Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

X is for ...
X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

L is for ...
Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

R is for ...
Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

S is for ...
Superposition

The feature of a quantum system whereby it exists in several separate quantum states at the same time.

C is for ...
Clocks

The most precise clocks we have are atomic clocks which are powered by quantum mechanics. Besides keeping time, they can also let your smartphone know where you are.

U is for ...
Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

M is for ...
Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

I is for ...
Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

T is for ...
Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

A is for ...
Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

Y is for ...
Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

C is for ...
Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now. This column from Quanta Magazine ​delves into the fundamental physics behind quantum computing.

P is for ...
Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

K is for ...
Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

O is for ...
Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

R is for ...
Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

Q is for ...
Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

D is for ...
Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

W is for ...
Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

K is for ...
Key

Quantum Key Distribution (QKD) is a way to create secure cryptographic keys, allowing for more secure communication.

E is for ...
Ethics

As the world makes more advances in quantum science and technologies, it is time to think about how it will impact lives and how society should respond. This mini-documentary by the Quantum Daily is a good starting point to think about these ethical issues. 

https://www.youtube.com/watch?v=5qc7gpabEhQ&t=2s 

C is for ...
Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

P is for ...
Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

A is for ...
Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

M is for ...
Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

H is for ...
Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

Q is for ...
Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

T is for ...
Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

A is for ...
Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

D is for ...
Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

M is for ...
Maths

Quantum physics is the study of nature at the very small. Mathematics is one language used to formalise or describe quantum phenomena.

B is for ...
Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

B is for ...
Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

G is for ...
Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

S is for ...
Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

S is for ...
Sensors

Researchers are harnessing the intricacies of quantum mechanics to develop powerful quantum sensors. These sensors could open up a wide range of applications.

I is for ...
Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer

T is for ...
Time

The arrow of time is “irreversible”—time goes forward. On microscopic quantum scales, this seems less certain. A recent experiment shows that the forward pointing of the arrow of time remains a fundamental rule for quantum measurements.

E is for ...
Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

H is for ...
Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

N is for ...
Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

F is for ...
Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

Q is for ...
Quantum States

Quantum states, which represent the state of affairs of a quantum system, change by a different set of rules than classical states.

L is for ...
Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

T is for ...
Time travel

Is time travel really possible? This article looks at what relativity and quantum mechanics has to say.

S is for ...
Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

Z is for ...
Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

J is for ...
Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics and is a technology to build qubits for quantum computers.

G is for ...
Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

U is for ...
Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

V is for ...
Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

Copyright © 2024 Centre for Quantum Technologies. All rights reserved.