test

Quantum Shorts

Calling all writers

We are delighted to announce a new call for entries to the Quantum Shorts flash fiction competition! We seek stories up to 1000 words long that take inspiration from the mind-blowing world of quantum physics.

“In these days of quantum computers and quantum satellites, even the news can read like sci-fi. We invite writers to explore behind the headlines and tell stories with emotion and imagination,” says judge and quantum physicist Artur Ekert.

To add a further challenge: stories must include the phrase “things used to be so simple”, taken from the winning story of our previous fiction call. Check the competition's full rules, get inspiration from our resources, then submit your stories here. The competition is free to enter and offers prizes up to US$1500.

News

Read More

Latest Update

10 Dec 2019
Quantum-inspired stories can win prizes up to US$1500
10 Dec 2019
A collection of 37 stories from 32 writers, free to download
29 Oct 2019
We'll be returning with a call for fiction and an ebook!

Organisers

Our Partners

Media Partners

  • Scientific American

Scientific Partners

  • Chad Orzel

    Chad is an Associate Professor in the Department of Physics and Astronomy at Union College, and he writes books about science for non-scientists. He has a BA in physics from Williams College and a Ph.D. in Chemical Physics from the University of Maryland, College Park (studying laser cooling at the National Institute of Standards and Technology in the lab of Bill Phillips, who shared the 1997 Nobel in Physics). He was a post-doc at Yale, and has been at Union since 2001.

  • Yvonne Gao

    Yvonne is an experimental physicist in Singapore developing state-of-the-art hardware for quantum information processing. She has been named in MIT Technology Review’s TR35 Innovators Under 35 Asia list for 2020 and awarded the Singapore National Research Foundation Fellowship (Class of 2020). Yvonne earned her doctorate at Yale University, where she worked on constructing the crucial building blocks of quantum computers using superconducting microwave circuits.

  • Michael Brooks

    Michael, who holds a PhD in quantum physics, is an author, journalist and broadcaster. He is a consultant at New Scientist and the author of numerous books including The Quantum Astrologer’s Handbook, Hollywood Wants to Kill You and the bestselling non-fiction title 13 Things That Don't Make Sense. He co-hosts the award-winning podcast Science(ish), which delves into the science behind popular culture.

  • Mariia Mykhailova

    Mariia is a software engineer on the Microsoft Quantum Systems team. Microsoft Quantum is building a full-stack open cloud quantum ecosystem, bringing together experts and learners around the world.

  • Artur Ekert

    Artur is the Director of the Centre for Quantum Technologies and Lee Kong Chian Centennial Professor at the National University of Singapore. He is also a Professor of Quantum Physics at the Mathematical Institute, University of Oxford, UK. His main research interest is information processing in quantum systems. Artur is a co-inventor of quantum cryptography, which uses the fundamental laws of physics to guarantee perfectly secure communication. He has worked, communicated with and advised several companies and government agencies.

  • Lindy Orthia

    Lindy is a senior lecturer in science communication at the Centre for the Public Awareness of Science (CPAS), the Australian National University. She has published extensively on representations of science in fiction, including in Springer’s Encyclopedia of Science Education and international journals such as Sex RolesPublic Understanding of Science, and Journal of Popular Television.

  • Ingrid Jendrzejewski

    Ingrid Jendrzejewski serves as Co-director of National Flash Fiction Day (UK), Editor in Chief of FlashBack Fiction and Flash Flood, and a flash editor at JMWW.  She studied creative writing and English literature at the University of Evansville, then physics at the University of Cambridge.  Her work has been published in places like Best Small Fictions, Passages North, The Los Angeles Review, Flash: The International Short-Short Story Magazine.  She has won various flash competitions such as the Bath Flash Fiction Award, the A Room Of Her Own Fo

  • George Musser

    George Musser is a contributing editor for Scientific American magazine and author of two books on fundamental physics, Spooky Action at a Distance and The Complete Idiot’s Guide to String Theory. He was a writer-in-residence at the Centre for Quantum Technologies in 2011. He has won numerous awards, including the 2011 Science Writing Award from the American Institute of Physics and, with his Scientific American colleagues, U.S.

Quantum Theories: A to Z

U is for ...
Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

G is for ...
Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

D is for ...
Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

A is for ...
Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

K is for ...
Key

Quantum Key Distribution (QKD) is a way to create secure cryptographic keys, allowing for more secure communication.

A is for ...
Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

A is for ...
Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

X is for ...
X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

S is for ...
Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

V is for ...
Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

Y is for ...
Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

B is for ...
Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

T is for ...
Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

I is for ...
Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

C is for ...
Clocks

The most precise clocks we have are atomic clocks which are powered by quantum mechanics. Besides keeping time, they can also let your smartphone know where you are.

Q is for ...
Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

Q is for ...
Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

S is for ...
Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

Z is for ...
Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

L is for ...
Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

M is for ...
Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

N is for ...
Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

P is for ...
Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

D is for ...
Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

S is for ...
Sensors

Researchers are harnessing the intricacies of quantum mechanics to develop powerful quantum sensors. These sensors could open up a wide range of applications.

M is for ...
Maths

Quantum physics is the study of nature at the very small. Mathematics is one language used to formalise or describe quantum phenomena.

R is for ...
Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

G is for ...
Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

J is for ...
Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics and is a technology to build qubits for quantum computers.

P is for ...
Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

I is for ...
Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

T is for ...
Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

R is for ...
Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

C is for ...
Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

B is for ...
Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

W is for ...
Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

U is for ...
Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

M is for ...
Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

O is for ...
Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

F is for ...
Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

H is for ...
Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

H is for ...
Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

L is for ...
Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

E is for ...
Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

S is for ...
Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

W is for ...
Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

K is for ...
Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

T is for ...
Time

The arrow of time is “irreversible”—time goes forward. This doesn’t seem to follow the laws of physics which work the same going forward or backward in time. Some physicists argue that there is a more fundamental quantum source for the arrow of time.

C is for ...
Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

Copyright © 2019 Centre for Quantum Technologies. All rights reserved.