Screening Partners

We will be updating this page as new venues join the Quantum Shorts film festival. Each of our scientific partners will be organising screenings of shortlisted films in their vicinity. Please check back later or sign up for our newsletter for updates.

 

The ArtScience Museum, Singapore, will host a screening organised in collaboration with the Centre for Quantum Technologies at the National University of Singapore. 

Event dates: to be confirmed

ArtScience Museum at Marina Bay Sands is a major cultural institution in Singapore that explores the intersection between art, science, technology and culture. An iconic presence along the Marina Bay waterfront, the museum presents exhibitions and programmes to deliver stories about art and science using a combination of intellectual discussion, education, beautiful design, and intriguing interactive content. Since its opening in 2011, ArtScience Museum has staged large-scale exhibitions by some of the world’s major artists, including Leonardo da Vinci, Salvador Dalí, Andy Warhol and Vincent Van Gogh, as well as exhibitions on physics, paleontology, biology and other scientific topics.

 

Glasgow Science Centre in Scotland, UK, will host a screening organised in collaboration with QuantIC, the the UK Quantum Technology Hub in Quantum Enhanced Imaging.

Event date: tbc

Glasgow Science Centre (GSC) is a 5-star visitor experience dedicated to raising awareness of the importance of science to our well-being, our economy and our society. Opened in 2001 as part of the Millennium Projects, GSC exists to develop:

  • Scientific Literacy: to help people access and understand the science that affects their daily lives;
  • Skills and Careers: to inspire the next generation of scientists and innovators;
  • Science as Culture: to help people discover and enjoy the wonder of science.

GSC is home to over 450 interactive exhibits, a digital planetarium, science show theatre, IMAX cinema, teaching laboratory and maker space. Covering all aspects of science, we have a comprehensive learning and events programme for families, school children, young people and adults; all delivered by our dedicated staff.

On an annual basis we engage with over 420,000 participants through our in-reach and outreach activities. In addition, we have over 13,000 season ticket holders and over 600 groups in our community membership programme. We work in partnership with local and national government, academia, industry and third sector organisations to deliver programmes and initiatives that support a variety of agendas – health, energy policy, innovation & skills, environment, attainment and digital learning.

 

The Otago Museum, Dunedin, New Zealand will host a screening organised in collaboration with the Dodd-Walls Centre for Photonic and Quantum Technologies.

Event dates: to be confirmed

Otago Museum shares the natural, cultural, and scientific stories of Otago, Aotearoa New Zealand and the world.

We began as a small collection of rocks in 1868. Over 150 years, our collections and purpose have evolved, growing to more than 1.5 million objects available for research and examination as well as for display in public galleries and exhibitions. Knowledge has the power to break down barriers, inspire change and spark creativity so we use these objects to tell our visitors more about the world – from here in Dunedin to deep space, from millions of years ago to envelope-pushing research.

Our galleries now include Tūhura, which boasts a planetarium, a tropical forest, a laser-activated digital gallery, and the award-winning Otago Community Trust Science Centre — which with 45 interactive exhibits, makes understanding science hands-on and fun.

Quantum Theories: A to Z

M is for ...
Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

A is for ...
Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

Z is for ...
Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

J is for ...
Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics and is a technology to build qubits for quantum computers.

C is for ...
Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

X is for ...
X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

O is for ...
Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

L is for ...
Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

Q is for ...
Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

L is for ...
Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

S is for ...
Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

W is for ...
Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

R is for ...
Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

K is for ...
Key

Quantum Key Distribution (QKD) is a way to create secure cryptographic keys, allowing for more secure communication.

A is for ...
Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

K is for ...
Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

R is for ...
Radioactivity

The atoms of a radioactive substance break apart, emitting particles. It is impossible to predict when the next particle will be emitted as it happens at random. All we can do is give the probability that any particular atom will have decayed by a given time.

R is for ...
Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

W is for ...
Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

P is for ...
Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

S is for ...
Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

A is for ...
Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

B is for ...
Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

G is for ...
Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

F is for ...
Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

D is for ...
Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

Y is for ...
Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

P is for ...
Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

N is for ...
Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

T is for ...
Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

D is for ...
Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

E is for ...
Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

M is for ...
Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

Q is for ...
Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

S is for ...
Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

B is for ...
Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

V is for ...
Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

G is for ...
Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

C is for ...
Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

H is for ...
Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

H is for ...
Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

I is for ...
Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

U is for ...
Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

I is for ...
Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

U is for ...
Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

T is for ...
Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

Copyright © 2018 Centre for Quantum Technologies. All rights reserved.