Many worlds flash fiction wins competition

June 10, 2020

Three short stories that give their characters access to other timelines have claimed prizes in the 2019-20 edition of the Quantum Shorts flash fiction competition. The stories explore the many worlds idea from quantum physics, in which every event is understood to have all possible outcomes, each happening in its own branch of the universe.  

Quantum Shorts is an annual competition for creative works inspired by quantum physics. It is run by the Centre for Quantum Technologies (CQT) in Singapore with media partners Scientific American and Nature, and leading quantum research centres around the world as scientific partners.

To decide the top two prizes, a jury of eight expert scientists and writers reviewed ten stories earlier shortlisted from 647 submissions to the competition. A public vote decided the third prize. Each winning author gets a cash award and an engraved trophy, on top of their shortlist award and one-year digital subscription to Scientific American.

Artur Ekert, Director of CQT and a member of the panel, was impressed by the finalists: “I have enjoyed reading them all—the quality of writing is remarkable.” Judge and author Michael Brooks praised the shortlist as being “full of surprises”. He said, “I loved the depth of creativity, the strange twists on quantum physics that I had never considered before.”

Earning first prize of $1500, “Fine Print” by C R Long tells the story of a woman prepared to pay a hefty price to buy her way into a new reality. C R Long is a writer who also works as a nurse at a veterans’ hospital in California.

This story was the favourite of judge Mariia Mykhailova, a software engineer on the Microsoft Quantum Systems team, who called it “a neat take on the many-worlds interpretation”.

It also impressed with a narrative twist. Lindy Orthia, a senior lecturer in science communication, said, “‘Fine Print’ has a pleasing twist I didn’t see coming, because its plot hits just the right rhythm and doesn’t overplay its hand.” Author Ingrid Jendrzejewski agreed, “This story had a great premise, and a wonderful shift at the end—one that I didn’t see coming because I was so focused on the client’s struggle.”

The runner up prize goes to “The Collapse” by Meg Sipos, who is a writer, editor and podcaster in Pittsburgh. In this edgy tale, rips in the fibres of reality see a couple being confronted by different versions of themselves and each other.

Experimental physicist Yvonne Gao found the story engrossing. She said, “The simple and relatable narrative brings to life the initial thrill and the eventual melancholy experienced by the characters.”

Author George Musser liked “The Collapse” best. “It avoids offering a specious explanation of the inter-world travel and keeps the focus on the human story,” he said. Physicist Chad Orzel said the story “does a great job with the emotional content and the relationship at the centre of the story.”

Decided by online public voting on the shortlisted entries, the People’s Choice Prize goes to “Shinichi’s Tricycle” by Ariadne Blayde. The story, which retells a small piece of the history of the atomic bomb, was also the top pick of judge Artur Ekert. He described the story as “moving, having a human touch” with “a nice mix of quantum and history”.

“I was very excited to see a project that took seriously the work of bringing together the arts and sciences,” said Ariadne, who is a novelist and playwright in New Orleans. “I feel there’s a big disconnect between those two worlds and I love how this competition has sought to bridge the gap.”

Congratulations to the winners! Find all the stories, more background on the judges and interviews with the winning authors at shorts.quantumlah.org.

Quantum Theories: A to Z

R is for ...
Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

H is for ...
Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

Q is for ...
Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

J is for ...
Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics and is a technology to build qubits for quantum computers.

I is for ...
Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer

W is for ...
Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

O is for ...
Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

C is for ...
Clocks

The most precise clocks we have are atomic clocks which are powered by quantum mechanics. Besides keeping time, they can also let your smartphone know where you are.

M is for ...
Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

M is for ...
Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

V is for ...
Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

Y is for ...
Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

U is for ...
Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

S is for ...
Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

N is for ...
Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

P is for ...
Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

K is for ...
Key

Quantum Key Distribution (QKD) is a way to create secure cryptographic keys, allowing for more secure communication.

D is for ...
Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

G is for ...
Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

C is for ...
Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

M is for ...
Maths

Quantum physics is the study of nature at the very small. Mathematics is one language used to formalise or describe quantum phenomena.

X is for ...
X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

Q is for ...
Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

A is for ...
Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

B is for ...
Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

F is for ...
Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

C is for ...
Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

B is for ...
Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

D is for ...
Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

S is for ...
Sensors

Researchers are harnessing the intricacies of quantum mechanics to develop powerful quantum sensors. These sensors could open up a wide range of applications.

T is for ...
Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

S is for ...
Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

P is for ...
Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

T is for ...
Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

L is for ...
Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

Z is for ...
Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

A is for ...
Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

A is for ...
Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

I is for ...
Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

E is for ...
Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

R is for ...
Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

L is for ...
Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

S is for ...
Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

W is for ...
Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

T is for ...
Time

The arrow of time is “irreversible”—time goes forward. This doesn’t seem to follow the laws of physics which work the same going forward or backward in time. Some physicists argue that there is a more fundamental quantum source for the arrow of time.

U is for ...
Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

H is for ...
Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

G is for ...
Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

K is for ...
Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

Copyright © 2020 Centre for Quantum Technologies. All rights reserved.