Novae

Rate: 
Your rating: None
4
Average: 4 (3 votes)
Status: 

FIRST PRIZE | Quantum Shorts 2016

About the Film: 
Thomas Vanz is a self-taught filmmaker and musician based in Paris, France. He tells us how he created a dramatic cosmic event in his garage. 
 
WATCH THE FILM FIRST!
 
What’s your background in film and science?
I've been passionate about the stars since I was a child. I started making this video on my own recently because I wanted to make a movie that links both of my passions.
 
What sparked your interest in supernovae?
I have always been interested in astrophysics, especially in the beauty of the laws that rules the cosmos. A supernova is exceptional. It deserves an entire movie. It is the story of death giving life. 
 
A supernova is the death of a giant star but it has consequences that lead to birth: it creates the more advanced elements of the universe and outstanding nebulae. In this sense, it is one of the most comprehensive events of the universe, and that’s why I chose it. 
I tried making the movie with the same philosophy. I really wanted to make this project from A to Z, so I also made the soundtrack. I make music besides my video work.
 
Your two making of videos, NOVAE - Making of & Breakdowns part I  and NOVAE - Making of & breakdowns part II, show beautifully how you captured the film. How did you get the idea to use ink in an aquarium?
I shot all of my movie in an aquarium because I found that ink in water was the best way to catch fluid movement. I chose this medium in order to represent an explosion that burst everything in every direction. 
 
I installed a quick DIY set-up in my garage, then I really tried a lot of different inks and processes like blending ink with alcohol, or shooting from below. I wish I could have made even more attempts, with a bigger aquarium. It would have been even more impressive!
 
How did you hear about Quantum Shorts? How do you feel about being shortlisted?
I'm really excited - it's the first festival where I'm selected
 
What do you hope to evoke in people who watch Novae?
Being interested in space could focus people more on the future, and I think that really matters for humanity. If we think together as one humankind, it would increase the speed of research, and we would start thinking more about the whole solar system instead of doing war and useless stuff between ourselves on our pale blue dot.
About the filmmaker(s): 

Thomas Vanz is a self-taught video artist based in Paris. Over the past two years, he has started directing for brands such as Bethesda, Audi, and even the french cinema school "La femis" with the Sidekick collectif. 

He has since started a company. In 2016, he created this short movie about a cosmic journey to a star’s death, made with ink in water.

Share this film

Quantum Theories: A to Z

G is for ...
Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

T is for ...
Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

M is for ...
Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

L is for ...
Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

X is for ...
X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

Q is for ...
Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

M is for ...
Maths

Quantum physics is the study of nature at the very small. Mathematics is one language used to formalise or describe quantum phenomena.

V is for ...
Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

B is for ...
Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

B is for ...
Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

T is for ...
Time

The arrow of time is “irreversible”—time goes forward. On microscopic quantum scales, this seems less certain. A recent experiment shows that the forward pointing of the arrow of time remains a fundamental rule for quantum measurements.

U is for ...
Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

W is for ...
Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

H is for ...
Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

K is for ...
Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

R is for ...
Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

C is for ...
Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

C is for ...
Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now. This column from Quanta Magazine ​delves into the fundamental physics behind quantum computing.

L is for ...
Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

J is for ...
Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics and is a technology to build qubits for quantum computers.

S is for ...
Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

T is for ...
Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

S is for ...
Sensors

Researchers are harnessing the intricacies of quantum mechanics to develop powerful quantum sensors. These sensors could open up a wide range of applications.

I is for ...
Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

S is for ...
Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

P is for ...
Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

N is for ...
Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

I is for ...
Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer

A is for ...
Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

A is for ...
Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

U is for ...
Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

H is for ...
Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

T is for ...
Time travel

Is time travel really possible? This article looks at what relativity and quantum mechanics has to say.

E is for ...
Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

Q is for ...
Quantum States

Quantum states, which represent the state of affairs of a quantum system, change by a different set of rules than classical states.

R is for ...
Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

S is for ...
Superposition

The feature of a quantum system whereby it exists in several separate quantum states at the same time.

W is for ...
Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

Z is for ...
Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

G is for ...
Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

Q is for ...
Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

D is for ...
Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

D is for ...
Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

A is for ...
Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

P is for ...
Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

C is for ...
Clocks

The most precise clocks we have are atomic clocks which are powered by quantum mechanics. Besides keeping time, they can also let your smartphone know where you are.

O is for ...
Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

K is for ...
Key

Quantum Key Distribution (QKD) is a way to create secure cryptographic keys, allowing for more secure communication.

M is for ...
Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

E is for ...
Ethics

As the world makes more advances in quantum science and technologies, it is time to think about how it will impact lives and how society should respond. This mini-documentary by the Quantum Daily is a good starting point to think about these ethical issues. 

https://www.youtube.com/watch?v=5qc7gpabEhQ&t=2s 

F is for ...
Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

Y is for ...
Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

Copyright © 2024 Centre for Quantum Technologies. All rights reserved.