test

Backstory: From the Ruins of Beijing

A Q&A with Andrew Neil Gray, Runner Up in the Open Category

Read the story first: From the Ruins of Beijing

 

 

This is your second time appearing in the Quantum Shorts prizes. What made you come back again?

 

I really enjoy this contest – the combination of the subject matter and the short form makes for an intriguing challenge. How do you tell an engaging story that incorporates quantum physics in only a few pages? When I saw the contest was open again, it was hard to resist!

 

How did you develop the idea for this story?

 

I developed it in two threads: the first was the scientific journey, the second was the emotional journey of the narrator. I wanted to make sure that both of them were intriguing, and also strongly connected. Once I had the idea about quantum crosstalk, I wrote the narrator’s story first. It was very dry and technical in my first draft, so on rewriting, I worked to develop the idea of his emotional wound and how it would connect with the fragments of information from other universes that he collected as he worked to help solve the mystery. I wrote the information snippets last.

 

What can you tell us about how you wrote it - anything from editing to offices to technology choices?

 

I write using Scrivener for Mac and the iPad, and I regularly take a ferry to my work in Vancouver, so much of my writing is done at a table on the boat. Every so often there are Orcas or Humpbacks outside the window, which is always a nice distraction.

 

Quantum computing is frequently in the news. How closely do you follow it? Was there any particular news that triggered this idea?

I regularly read about advances in science in sources such as Ars Technica, Scientific American and Quanta Magazine, and I’ve been fascinated by developments in quantum computing in general (especially since a Vancouver company, D-Wave Systems, is one of the pioneers). I’d describe myself as an enthusiastic amateur. The story wasn’t triggered by any particular news, other than the knowledge that researchers all over the world are currently racing to develop practical quantum computers.

 

What inspired the information snippets leaking in from other universes?

 

This came partly from the many-worlds interpretation, which I find fascinating in terms of writing possibilities. The possibility that qbits might exist in multiple universes suggested to me that there would be a fictional path to connecting to other universes through computers and information. I also took great liberties with the idea that you can escape entropy limits in computation by expelling the entropy to an outside environment, which in this case was another universe.

 

Is there anything you would like to add to your bio, for readers to know about you?

 

I have a website at www.andrewneilgray.com that has links to my other writing. My most recent publication was a co-written novella called The Ghost Line, published by Tor.com last July.

 

What other projects do you have on the go, or coming up?

 

I’ve just finished the first draft of a near-future speculative fiction thriller involving drones and nefarious billionaires, and hope to complete the book this year.

 

Can you recommend one or two science-inspired books you've read in the past year? What did you like about them?

 

I really enjoyed Kim Stanley Robinson’s New York 2140, a science fiction novel with a strong grounding in science that explores what living in a half-drowned New York that still functioned as a modern city would be like. He’s always able to mix science and story in an intriguing way. I also enjoyed Sapiens: A Brief History of Humankind by Yuval Noah Harari. It reminded me in some ways of Carl Sagan’s Shadows of Forgotten Ancestors, a book that was a strong influence on me in my teens. Both books provide a wide perspective on human origins and why we are the sometimes maddening and intriguing creatures we are.

Quantum Theories: A to Z

P is for ...
Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

Q is for ...
Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

A is for ...
Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

Q is for ...
Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

L is for ...
Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

W is for ...
Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

A is for ...
Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

N is for ...
Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

Z is for ...
Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

X is for ...
X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

R is for ...
Radioactivity

The atoms of a radioactive substance break apart, emitting particles. It is impossible to predict when the next particle will be emitted as it happens at random. All we can do is give the probability that any particular atom will have decayed by a given time.

T is for ...
Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

U is for ...
Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

F is for ...
Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

T is for ...
Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

V is for ...
Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

H is for ...
Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

G is for ...
Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

J is for ...
Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics and is a technology to build qubits for quantum computers.

U is for ...
Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

D is for ...
Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

D is for ...
Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

K is for ...
Key

Quantum Key Distribution (QKD) is a way to create secure cryptographic keys, allowing for more secure communication.

B is for ...
Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

M is for ...
Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

M is for ...
Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

S is for ...
Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

L is for ...
Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

R is for ...
Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

S is for ...
Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

S is for ...
Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

C is for ...
Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

W is for ...
Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

P is for ...
Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

R is for ...
Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

Y is for ...
Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

I is for ...
Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

A is for ...
Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

O is for ...
Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

G is for ...
Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

C is for ...
Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

E is for ...
Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

I is for ...
Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

K is for ...
Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

B is for ...
Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

H is for ...
Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

Copyright © 2019 Centre for Quantum Technologies. All rights reserved.